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Abstract

This paper presents the exact closed-form solutions for the vibration
analysis of extension-bending-shear-torsion coupled responses in
asymmetric laminated Timoshenko beams. The study derives four
governing differential equations and corresponding boundary
conditions using Hamilton’s variational principle. The formulation,
based on first-order shear deformation theory (FSDT), accounts for
rotary inertia, Poisson’s ratio, and extensional-flexural-torsional-
shear coupling effects arising from material anisotropy. The exact
solutions are obtained for various harmonic bending and twisting
excitations under different boundary conditions, capturing the fully
coupled axial, bending, and torsional responses. This approach
offers a robust analytical method for understanding the complex
dynamic behavior of laminated composite beams subjected to
dynamic loads, with potential applications in aerospace,
mechanical, and civil engineering structures, such as aircraft
components, turbine blades, and bridges.

Keywords: Closed-form solution; extension-bending-shear-torsion
coupled response; harmonic excitations; asymmetric laminated
beam.
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Introduction and Objective

Composite laminate structural members are increasingly used in
various engineering applications due to their excellent strength-to-
weight and stiffness-to-weight ratios. Multilayered composite
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beams are widely applied in aerospace, mechanical, and civil
engineering, including in aircraft wings, fuselage structures,
helicopter blades, vehicle axles, turbine blades, and marine
structural frames, due to their superior properties. In these
applications, composite laminated beams are often subjected to
cyclic dynamic loading, such as harmonic excitations, which can
arise from aerodynamic forces, hydrodynamic wave motions, wind
loads, or imbalances in rotating and reciprocating machinery.
Harmonic forces can induce unwanted vibrations and lead to fatigue
failure, which has become an important consideration in the design
of composite laminated structures. Under such forces, the transient
component of the dynamic response is most significant at the start
but quickly dissipates, making it less relevant for fatigue life
evaluation. On the other hand, the steady-state dynamic response
persists over time and is important for fatigue analysis, which is the
primary focus of this study. The objective is to develop an exact,
efficient solution that isolates and captures the steady-state
response. This analytical closed-form solution also predicts the
quasi-static responses, eigen-frequencies, and eigen-modes of
asymmetric laminated composite beams.

While dynamic analysis of composite asymmetric laminated beams
has received attention in recent research, most studies have focused
on free vibrations rather than responses to dynamic forces. Various
studies have developed exact analytical solutions and finite element
techniques for free vibration analysis of composite beams. For
instance, Khdeir and Reddy (1980) proposed an exact solution based
on higher-order shear deformation theory for cross-ply rectangular
beams, while Banerjee and Williams (1996) used the exact dynamic
stiffness matrix to study composite laminated beam vibrations,
accounting for shear deformation and bending-torsional coupling.
In 1998, Banerjee further explored the free vibration of axially
composite laminated Timoshenko beams using the dynamic
stiffness matrix method, where his formulation captured the
coupling between bending and torsion, as well as the effects of axial
force, shear deformation, and rotary inertia. Chakraborty et al.
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(2002) employed finite element analysis based on first-order shear
deformation theory to study free vibration and wave propagation in
composite laminated beams with symmetric and asymmetric ply
stacking. Murthy et al. (2005) developed a refined two-node beam
element based on higher-order shear deformation theory for the
coupled axial-flexural-shear vibration analysis of asymmetrically
stacked composite beams. Their formulation ensured that the finite
element shape functions satisfied static equilibrium governing
equations. Tahani (2007) proposed a displacement-based layerwise
beam theory and applied it to cross-ply antisymmetric (0°/90°) and
(0°/90°/0°) laminated beams under sinusoidal loads. Jun et al.
(2008) developed the exact dynamic stiffness matrix method to
analyze the free vibration of arbitrary laminated composite beams,
utilizing first-order shear deformation, trigonometric shear
deformation, and higher-order shear deformation beam theories.
Their mathematical formulations considered the effects of shear
deformation, rotary inertia, Poisson's ratio, and extensional-bending
coupling deformations. Hjaji et al. (2016) developed a super-
convergent one-dimensional finite beam element with two nodes to
analyze the steady-state dynamic flexural response of symmetric
laminated composite beams under bending harmonic forces. This
new beam element, based on exact shape functions that precisely
satisfy the dynamic coupled governing equations, is applicable to
symmetric laminated composite beams and takes into account shear
deformation, rotary inertia, and Poisson’s ratio. In 2017, Hjaji et al.
extended their work by investigating analytical closed-form
solutions for the flexural dynamic analysis of symmetric laminated
composite beams subjected to transverse harmonic forces. Their
formulations, based on first-order shear deformation theory,
incorporate the effects of shear deformation, rotary inertia,
Poisson’s ratio, and fiber orientation. Nguyen et al. (2017) presents
a new analytical solution utilizing a higher-order beam theory for
the static, buckling, and vibration analysis of laminated composite
beams. The governing equations of motion are derived from
Lagrange's equations. An analytical solution employing
trigonometric series, which accommodates various boundary
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conditions, is formulated to address the problem. In 2018, Nguyen
et al. extended their work to investigate Ritz-based solutions for
analyzing the bending, buckling, and vibration behaviors of
laminated composite beams with arbitrary lay-ups. A quasi-3D
theory is employed, which considers a higher-order variation of both
axial and transverse displacements to effectively capture the
influences of shear and normal deformations on the behavior of
composite beams. Karkon (2020) developed a new three-node
element with three degrees of freedom per node for the bending, free
vibration, and buckling analysis of laminated beams. The
formulation of the element is based on the first-order shear
deformation theory (FSDT). Akbas et al. (2021) performed a
dynamic analysis of fiber-reinforced composite laminated simply-
supported beams under moving loads, using Timoshenko Beam
Theory in combination with the Newmark average acceleration and
Ritz methods. Recently, Hjaji and Nagiar (2023) investigated the
dynamic analysis for extensional-bending coupled vibration
responses of antisymmetric composite laminated rectangular beams
under various bending forces. Their formulation was based on the
first shear deformable beam theory which accounts for the effects of
rotary inertia, Poisson’s ratio, fiber orientation and the bending-
extension coupling coming from the material anisotropy. More
recently, Hjaji and Nagiar (2024) developed an exact one-
dimensional finite beam element with three degrees of freedom per
node for analyzing extensional-bending coupled vibrations in
antisymmetric composite laminated beams subjected to various
harmonic axial and bending forces. The new beam element based
on the exact shape functions which exactly satisfy the dynamic
coupled governing filed equations were derived in previous study of
Hjaji and Nagiar (2023) is applicable to antisymmetric laminated
composite beams and accounts for the effects of shear deformation,
rotary inertia, Poison’s ratio, extensional-bending-twisting coupling
resulting from the anisotropy of the composite material.

Although most prior research has concentrated on the free vibration
analysis of composite laminated beams, the dynamic analysis of
these beams under dynamic forces has received limited attention. To
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the authors' knowledge, there are no existing studies that provide
analytical closed-form solutions for the dynamic analysis of
composite asymmetric laminated Timoshenko beams subjected to
harmonic bending and twisting excitations. Therefore, the previous
work of Hjaji and Nagiar (2023) is extended in this study to
investigate the fully coupled of extensional-flexural-torsional-shear
vibration responses by developing exact closed-form solutions for
asymmetric laminated beams with rectangular cross-sections under
various harmonic bending-twisting excitations. The four coupled
governing equations and corresponding boundary conditions for
these beams were derived using Hamilton’s variational principle.
This study also examines the impact of shear deformation, rotary
inertia, Poisson’s ratio, fiber orientation and extension-bending-
shear-torsion coupling on natural frequencies, as well as quasi-static
and steady-state dynamic responses. The exact closed-form
solutions for axial and transverse deformations, bending and
torsional rotations presented here are effective and suitable for
analyzing the forced fully coupled responses of composite
asymmetric laminated beams subjected to different harmonic
excitations.

The significance of this research extends beyond theoretical
analysis, encompassing a wide range of practical applications. The
exact closed-from solutions developed for coupled extension-
bending-shear-torsion dynamic responses of asymmetric laminated
Timoshenko beams have significant implications across various
engineering fields. For different beam types, this model can be
extended to functionally graded materials (FGMSs), which are
important in structures such as turbine blades that experience
variable material properties across their thickness. Furthermore, the
methodology can be applied to hybrid laminated beams, which
combine multiple materials, including metal and composites, to
enhance structural performance in aerospace and automotive
designs. Additionally, the framework is applicable to curved
laminated beams, common in bridge arches and aircraft fuselage
frames, where curvature introduces complexities in vibration
behavior due to the interaction between extension, bending, and
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torsion. In terms of loading conditions, this model is adept at
handling random dynamic loads, such as wind and seismic forces,
which are crucial for assessing the integrity of civil infrastructure
like bridges and offshore platforms. The solution is also applicable
for analyzing moving loads, such as those imposed by vehicles or
trains traversing bridges, which induce intricate vibration patterns.
Moreover, the strength of the methodology makes it suitable for
cases involving impact loading, an essential consideration in
crashworthiness assessments and the design of protective structures.
When considering nonlinear effects, the exact solution can be
adapted for geometrically nonlinear behavior, particularly relevant
for lightweight, flexible aerospace structures where significant
nonlinear coupling may occur. The model can also accommodate
nonlinear material behavior, such as viscoelastic or hyper elastic
responses, allowing for the analysis of time-dependent effects in
structural components. Incorporating nonlinear damping further
enhances the model's utility, making it suitable for vibration control
in civil and mechanical systems subjected to dynamic conditions.

Mathematical Formulation

A thin multi-layered composite beam ofspan L and rectangular cross
section (b X h), where thickness h and width b, is considered as
shown in Figure (1). The right-handed Cartesian coordinate system
(X,Y, Z)is defined on the mid-plane of the composite beam, where
X axis is taken along the beam axis, Y axis and Z axis is along the
width and thickness of the composite beam, respectively.The
mathematical model of the extension-bending-shear-torsion
coupled asymmetric/antisymmetric composite laminated beam is
based on the following assumptions:

o The present formulation is applicable to composite asymmetric
laminated beams of rectangular cross-sections.

o The material of each layer exhibits linearly elastic behavior and
has three planes of material symmetry.

o Each layer has a uniform thickness.

o Each layer is thin and all layers are perfectly bonded together.
o Displacements, strains and rotations are assumed small.
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o The beam cross-section remains planar but does not remain
perpendicular to the centroidal axis after deformation, i.e., the
transverse shear deformation of the mid-surface of the cross-section
is incorporated in the assumed kinematics.

o The effects due to material anisotropy and rotary inertia are
taken into account.

o Only the steady state dynamic response is required.

o Damping is neglected in the formulation.

The axial, transverse displacements, bending and torsional
rotationsfunctions for a general pointp(x,z) of height z from the
centroidal axis of composite laminated beam based on first-order
shear deformation theory (FSDT) take the following forms:

up(x,z,t) = u(x, t) +z6(x,t) @
vy (x,2,t) = zp(x, t) 2
wy(x,z,t) = w(x,t) 3

Where u(x, t), v(x,t) and w(x, t) are the axial, lateral and transverse
displacements of a point p(x, z)on the mid-plane in the (X,Y,2)
directions, respectively, u,(x,z,t),v,(x,zt) and w,(x, z t)are the
axial, lateral and transverse displacements of point p, respectively,
0(x,t) and ¢(x, t)are the rotations of the normal to the mid-plane
about the Xandy axes, respectively, and x and t are spanwise
coordinate and time, respectively.

Z

Fiber onentation

= :P/" o
Composite Laminated beam a b

Figure 1. A composite laminated beam of rectangular cross-section
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The strain-displacement relations of the composite laminated beam
associated with the small-displacement theory are given as:

Exx = % =u'(x,t) +20'(x, t) = &y + zky (4)
owy(x,t)  duy(x, t)

Vaz = Zx + z:32 WD +6(x0 ®)
ouy(xt) vy (xt) ’

Yy = gy z:3x =z¢'(x,t) = zk (6)

wheree,, = du/dxis the midplane axial strain, k, = d6/dxis the
midplane curvature, and k,, = d¢/dx is the twisting curvature.

For asymmetric laminated beam, the constitutive equation is written
in matrix form as:

Nx [All A12 A16 B11 B12 Bl6 Exo
Ny A12 A22 A26 B12 B22 B26 | gyo |
< Nyy [ _ Ajg Aze Ase Bis Bag Beg { Vxy } @)
Mx |Bll BlZ BlG Dll D12 D16 | kx
M,, |B12 By, Byg Diz Dyy Dyg | l k, J
My 6x1 lBlﬁ Bz6 Bes Dis Dae D66J6><6 Ky 6x1

whereN,, N,andN,,are the in-plane normal and shear forces, M, M,,
and M,, are the bending and twisting moments, ¢,,, ,, and y,,, are
the mid-plane axial and shear strains, ky, k,,andk,, are the
bending and twisting curvatures, respectlvely A;jj, B;; and D;;
denote the extensional, coupling and bending stlffnesses,
respectively, which are functions of laminate ply orientation, stack
sequence and material properties, are given as:

Aij, By, Dyj = h;{fz [0,;] 2.2 dz, (Forij = 1,2,6) (8)
where the transformed reduced stiffness’s Q;andQsare given by
the following expressions (Jone 1975):

611 = Qq1¢* 4+ 2(Q12 + 2Qs6)s%c? + Qpps*
612 = (Q11 + Q22 — 4Qe6)s%c? + Q12(s* + ¢*)

Q,, = Q115" + 2(Q12 + 2Q66)s%c? + Qpp5%c?

Q6:(Qll_

Q12 -

2Q66)sC + (Q12 —

Q22 + 2Qe)s3c
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§26 = (Q11 — Q12 — 2Q¢6)sc + (Q12 — Q22 + 2Q46)sC>
Qs = (Q11 + Q22 — 2Q12 — 2Q66)s%c* + Qg (s* + c*)

wheres = sinf, ¢ = cosp, B is the angle between the fiber direction
and longitudinal axis of the beam,and Q,;, Q;,, Q;,and Qgeare the
stiffness constants and are given in terms of engineering elastic
constants (Jun 2008)as:

Q11 = E11/(1 —v12021), Q2 = V12 Ezp/(1 —vgpupq) =
Uz1 E11/(1 — v12021),Q22 = E32/(1 — v12021) , and Qg = Gy

in which the constants E,,, E,,are Elastic moduli, G,,, G,3, G,3are
shear moduli, and v,,, v,;are Poison ratios measured in the principal
axes of the layer.

The present formulation is based on the first order shear deformation
beam theory, the effect of transverse shear deformation is taken into
account, then, the transverse shear force per unit length Q,.is given
(Jun 2008)by:

Qxz = AssVxz = Ass(W' + 6) (9)

whereQ.. = Gy3¢? + Gy352, Ass = kg f_hf{/zz Q.<dz, andkgis the shear
correction factor which taken as 5/6 to account for the parabolic
variation of the transverse shear stresses.
When the laminated composite beam is subjected to axial force,
bending and twisting moments. Then, the lateral in-plane forces and
moment inY direction are negligible and are set to zero, i.e., N, =
Ny, = M, = 0. In order to account for Poisson’s ratios, the mid-
plane strains e,,,y,xyand curvaturesk,, k,,are assumed to be
nonzero. For asymmetric/antisymmetric laminated beams, the
extensional, bending and twisting responsesare fully coupled. Thus,
equation (7) can be rewritten [6] as:

Ny Zn §11 Bie| (u'
My ¢ = Bi1 D11 Dye 9,} (10)
Mev) |Bis Dis Des
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A11 B11 Bie A1 Bi1 Bisg
Where (B,; Dy Dig| = |Bi1 D11 Dis|—
§16 516 566 Bis Die Dee
A1z Are Bi2][Azz Aze Baz] ' [A1z Ars Bia]
Bi; Big Di2||A26 Aes Bze Bi; Big Di2
By6 Bee D26l LBy Bag Do By6 Bee Dae

If the influence of Poisson ratio is ignored, the stiffness coefficients
(A11,B11,B16, D11, D16, Dgg) in equations (10) are then replaced by
the stiffness coefficients (411, B11, Bis D11, D16, Dee), respectively.

Energy Expressions and Variational Formulation
The total kinetic energy of the composite laminated beam is given
(Hjaji et. al 2017) as:
1 L h/2
T = Ef f plud + v2 + W] bdzdx
0 Y-h/2
- %fol'p[lluz + 21,00 + 1362 + I3 + [Lw?]bdx  (11)

in which the dot denotes the derivative with respect to time t, and
the densities I;,I, and I; of the composite laminated beam are
introduced by substituting equations (1-3) into above equation as:

h/2 1
11'12'13 = _h/zp[l,z,zz] dz = Z?:l Pk [(Zk - Zk_l),E(Z]% -
1
221).5 (7 — 2] (12)

where p,, is the mass density of the k™ layer.
The internal strain energy stored in the composite beam is given as:

L
Us = %fo L[O-xgxx t TyVay T szyxz]dAdx
1
~2
From equation (10) and above equation, gives:

L
f [Nxsxo + Mxkx + Mxykxy + szyxz]bdx
0

U =3 [y [A10” + Assw'* + D110 + Dgstp” + 2B1u'0’ +
2B16u'®" + 2D140"¢" + 2455’0 + Ass0?] bdx (13)
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Ayl g o shell 40 sal) dlaall




International Science and Volume 35 aaad) Ryl p glll A0 g

Imtrwaational beimrs mad Taviasiags demraal

ﬁg:ﬁﬁlﬁ:m‘ Part 1 sl I S T-J %

October 2024 s sis)
82024/10 /30 ;g gdgall o W&l aly  a2024/9/28 i A8l adiad a3

The potential energy of the applied forces is expressed as:

Vo = — [ [ax (o, Oux, £) + q,(x, Ow(x, £) + my (x, )8 (x, £) +

My, (x, ) P(x, t)]dx - [Px (x, Hulx, t) + P,(x, t)w(x, t) +

My (2, 0)8(x, 1) + My, (x, D (x, )] (14)

where g, (x, t) and q,(x,t) are the distributed axial and transverse
harmonic forces, m,(x,t), my,(x,t) are the distributed harmonic
bending and twisting moments, P.(x,t), P,(x,t) are the
concentrated axial ~and  transverse  harmonic  forces,
M, (x,t), M,,(x,t) are the concentrated harmonic bending and
twisting moments applied at composite beam ends (i.e., x = 0, L).
The dynamic coupled equations governing the fully extension-
bending-shear-torsion coupled responses of composite asymmetric
laminated beam subjected to various harmonic forces and moments
can be derived using the following Hamilton variational principle,
which can be written as:

t2
J 6(T —I)dt =0, for du(x,t) = dw(x, t) = §0(x,t)
t1

= 8¢p(x,t) =0, att = tyandt, (15)
where t, andt,are two arbitrary time variables and § denotes the first
variation, and I7 is the total potential energy which is the sum of the
internal strain energy and the potential energy for the applied loads,
i.e., IT = U + V,.By substituting equations (11), (13) and (14) into
Hamilton principle in (15), performing integration by parts, the
governing coupled equations are then obtained as:

Aju"(x, t) — Liii(x, t) + B110"(x, t) — L,6(x, t) +
B169"(x,t) = qx(x,t)/b (16)
Asew"(x,t) — I;w(x, t) + Ass0'(x, t) = q,(x, t)/b a7
Byu"(x, t) — Lii(x, t) — Assw'(x, t) + D1,0"(x, t) —
AssO(x,t) — L6(x,t) + D1c¢"(x, t) = my(x,t)/b (18)
B1u(x, )+ Dy0" (x, £)-l p(x, )+ Dop p(x, ) = My, (x,8) /b (19)
The related boundary conditions are:

_ _ — L
[b(Allu’ + B1,0" + 316¢’) + N, (x, t)]0 Su(x)|s=0  (20)
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[b(Assw' + Ass0) + P,(x, )]G Sw(x)|g = 0 (21)
[b(D116 + Byyu’ + D16d) + My (x, 1)), 6800 [ = 0 (22)
[b(Dest’ + Brow’ + D1g8") + My (x,0)]; 8615 = 0 (23)

The set of governing coupled equations (16-19) and associated
boundary conditions (20-23) describes the behavior of asymmetric
laminated composite beam under various dynamic excitations.
These coupled equations account for the complex interactions
between axial, bending, and twisting deformations, influenced by
the anisotropic material properties of laminated composites.

Expressions for Forces and Displacement Functions
The composite beam illustrated in Figure (2) is assumed subjected
to general applied harmonic forces and moments within the beam:
[@x(x, ), g (x, £), My (x, 1), My (%, £) | =
[0, G0, @, (), M (), Ty () ] ¢ (24)
and the harmonic forces and moments applied at composite beam
both ends (x = 0, L):
[Pe(xe, £), Py(xe, t), My (X, £), Myy (X, 1)

= [P (xe), P2 (xe), My (%), Myy (xc)]e™, forx, =0, L (25)
where 0 is the circular exciting frequency of the applied harmonic
forces and moments, i = v/—1 is the imaginary constant.
Under the given harmonic forces and moments, the displacement
and rotation fields corresponding to the steady state dynamic
response are assumed to take the following form:
[u(x, t),w(x,t),0(x,t),p(x, t)] =

[U(), W(x),0(x), ®(x)]e (26)

where U(x), W (x),8(x)and®(x) are the amplitude space functions
for axial displacement, transverse displacement, bending and
twisting rotations, respectively. Since the present formulation is
designed to capture only the steady-state response of the coupled
system of equations, the displacement fields proposed in the
equation (26) disregard the transient component of the response.
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P,(L,t)

P,(0,1) q.(x,t)
OREERERERERRERER R0
P,(0,t) = “\‘,“\.“\\.:‘.“\‘.“\\.4\‘.4\.‘“‘.4‘. \ > x

s =
CACACACAVACAVAVACACAVACY
M,y(0,t) m,(x,t) My (x,t) 4x(x,1) | My, (L, t)
L

Figure 2. A composite under various harmonic forces and moments

Governing Field Equations

From equations (24-26) and by substituting into equations (16-19)
and (20-23), the fully extension-bending-shear-torsion coupled
equations of motion are obtained in matrix form as:

0" M g 0| [ W0 | )7, | o
Mz Mp3M33Ms3, 8(x) | m,(x)/b
My, 0 M3uMy, La(x)} Lﬁxy(x)/bJ
|n WhICh M11 = (11.{22 + le@z), M13 = (12.02 +§11@2), M14_ =
BisD”, My = —(hQ%+As50%), Mp3 = —AssD, Ms3 = (130" +
Dll(DZ - A55)’ M34_ = D16(D2’ M4_4_ = (13.(22 + D66®2),Where @ iS the

2

differential operator, i.e.® = = and 9= .

Equation (27) governs the extension-bending-shear-torsion coupled
response for asymmetric laminated beams under various harmonic
excitations. The present formulation focuses on developing the
exact closed-form solutions for the steady state dynamic response
governed by the four coupled equations provided in equation (27).

Closed-Form Solutions of Coupled Equations

The total closed-form solutions of the coupled field equations in
(27) consist of two parts: the homogeneous solution and the
particular solution.
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The homogeneous solution of the governing coupled field
equationsUy, (x), W, (x), 0, (x)and®, (x)is obtained by setting the
loading terms in the field equations to zero, i.e., g, (x) =q,(x) =
my(x) = My, (x) =0. The homogeneous solution of the
displacement space functions is then assumed to take the following
form:
Hp(O)ixa = (€1 €2 €3 Ca)yyye™* =

?=1<C)i,1><4 em (28)
where(x, ())ixa = U COW,(x) 8,(x) Dp(x)ixe IS the
homogeneous solution of extensional, transverse displacements,
bending and twisting rotations andthe vector of unknown constants
IS(C);1xa = (€1 C2C3  Ca);45q. From equation (28), by substituting
into equations in (27), a non-trivial solution is obtained by setting
the determinant of the matrix to zero, resulting in eighth-order
polynomial equation of the form:

pamf + psm¢ + pymif + pymf +pg =0 (29)
wherep,throughp,are constants arising from the expansion of the
determinant. These constants are obtained as:

Po = 961113[14_5511 +0%(13 - 1113)],_
p1 = Qi[QZ(Deelﬂé?’ + 2By, h L1+ Assll; = DyyIfl5) —
I (D6611 + Assls + 1‘11113)(13Qz —Ass) — A12;51113]:

p, = Q? [QZ(ASSIZ + B11I1)(D6612 + B1113) - (A11D6611 +
5 i 2 202 (5 T =2
AgsDegly + Ay Assls) (1302 — Agg) — 130% (D13 Dgs — D) -

_ _ _2 _ _

B 211111392(1_411 + Ass) - Assﬂz@esh i A1113) +_
IZQZ(BllDGGIl_BléDléll + A5531113) - B1611(D161292_B1613QZ +
AssB1s)|,
p3 = 02 [(§11566 - §16516)(A5512 + By + §1611) - 11(211 +
_ _2 _ _ _

Ass) (D11D66 - D16) - A11A5513(D11 + Dee) +
A55§11(56612+§1113) - A55§16(51612—§1613)]a and

_ _2 — - _ _2
Py = Ass [A11 (D16 - D11D66) + Bll(BllD66 - 2316D16) + Bl6D11]'
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Equation (29) has eight nonzero distinct roots denoted asm; (fori =
1,2,3,....,8). For each root m;, there is a corresponding set of
constants (C); x4 =(c1 €2 €3 Ca);1.,. By substituting these
values back into the homogeneous coupled system of equations in
(27), the constants ¢, ;,c,;and c,;can be expressed in terms of
constants c3;through the relationsc, ; = Gy ;c34,c2; = G2,i€3;,C3; =
Gzicsande,; = Gyicz; (fori=1,2,3,....,8), respectively, where

G.:=— (miz(§11+§1664,i)+1292> G = _ —Agsm; Co =10
v 2+ Ayym7 L 2 2y b3, = LU,
(9% +41m7) (Assm?+1;02)

(1,02 +4By,m?)° —A(1,0%+ Ay m?)
Emmiz (11.{22+ lemiz)—Eleml? (12.{22+ Ellm%)

andG,; = (

in which 2 = (I30% + Dyymf — Ass — Assm;Gy,).

The homogeneous solutions for the extensional, transverse
displacements U, (x), W, (x) bending rotation 6,,(x),and twisting
angIeEh(x)given in equation (28) are expressed in matrix form as:

{)_(h(x)}4><1 = [E]4X8[E(x)]8><8{63'i}8>(1 (30)
51'1 51'2 61'3 aae o 61,8]
— Gy, Gy Gz wnn. G
Where [G]4><8 — |_2,1 _2,2 _2,3 _2,8| ,
63,1 63,2 63,3 - GB’SJ
64,1 64,2 64,3 - G4,8 4x8

[E()],,4is @ diagonal matrix consisting of exponential functions
e™*(fori = 1,2,3,...,8), andthe vector of unknown constantsis
(C3i)1xg = (€31 €32 €33 .o C3,8),xglS determined from the
problem boundary conditions.

For a composite laminated beam subjected to uniform distributed
harmonic excitations:

[0, (0, @, (), M (), My ()] = [, T M, My | (31)

The corresponding particular solution {;_(p}4 1of the coupled field
X

equations is obtained as:
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l,.,

{[(9213 — Ass)q, — LO*m,]/[bQ* (1115 — I Ags — 12292)]1

3 —q,/bL0?
{ (M, = q, 1)/ [bQ*(Q* 1115 — I Ags — 150%)] }
Moy/bl5 02 ) o
(32)

where (¥,)1xa = (UyW, 8, @®,)1xs. Then, the total steady state
dynamic response for the coupled field equations is determined by
adding the homogeneous solution in equation (30) to the particular
solution in equation (32), yielding:

T axt =[G, ([EO] (Eaidguy + (%), (33)
where (¥(x))ixa = (UGW(x) 8(x) @(x))1xs, and the unknown
(:onstants.{E&i}1X8 appearing in equation (33) are obtained by
applying the beam boundary conditions.

The boundary conditions for the asymmetric laminated beam
considered in the present formulation are given in Table (1). By
using the appropriate boundary conditions for the composite beam,
the complete closed-form solutions for clamped-free (CF), simply-
supported (SS), clamped-clamped (CC) and clamped-pinned (CP)
asymmetric laminated beams under various harmonic excitations
are conducted in Table (1).
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Table (1): The exact closed-from solutions for asymmetric laminated
beams for different boundary conditions

Beam

type Boundary conditions

U(0) =wW(0) =6(0) =®(0) =0,
[A11U'(L) + B116'(L) + B16®'(L)] = = P,(L)/b
Ass (W'(L) +8(L)) = —P,(L)/b,
[Euﬁ(l‘) +Dy,0"(L) + 5165(14)] =—M,(L)/b
b[B1sU'(L) + D166’ (L) + Dg®'(L)] = — M, (L) /b

Closed-form solution

CF {)_(C(x)}4x1 [ ]4x8[E(x)]8x8[lp 8X8{Q }8><1 { }xl

where ['Pc]gxs = [{GLL‘}|{Gz,i}|{1}|{G4,i}|{771,i}|{TIz,i}|{TI3,i}|{TI4,i}]ZXs'
N = miemiL(Z11E1,i + By + §1664,i)/ M2i = emiL(miEZ,i + 1)
N3, = miemiL(EuaLi +Dyy + 51664,1'):
Nai = miemiL(EmEu +Dig + 56664,1')

— — -Py(L) | -P,) & |-M @
(QC)1><8 = <_UP - b( Ass(b —6p b( )

_ﬁxy(l‘)>
b Tixs
Boundary conditions

U0)=w()=o(0)=0, [_511?(0) +B1,U'(0) + 5165(0)] =
M, (0)/b
[2117(14) +By,0'(L) + §16E(L)] = —P,(L)/b,
[D116"(L) + B1,U'(L) + D1s@"(L)] = =M, (L)/b

Closed-form solution

ss Ts e =[C], J[EO], [Pl o @shixs + (o), where
SS]8><8 — [{ 11}8x1{62! le{ﬂl’}8X1{G4l}8><1{‘u2’}8x1{‘u3l}8x1
{Ha, g 5.3 gss g

p1,i = mi(B11Gyi + D11 + D16Gay), Hai =M H3i = Gpie™,
Hay = N3 andps; = Gy e™E,
_ | 5 [ Mx©) | 5 | =N | T | -Mx)|
(st)1><8 = (‘Up|_Wp| |_¢P b |_Wp| b |_d) )

1x8
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Beam

type

Boundary conditions

U(0) =W(0) = 6(0) = P(0) = 0,[A;1,U'(L) + B110' (L) + B16®"(1)]
=P,(L)/b
W(L) =a()=0 r[Elly(L) + B, U'(L) + Blsa(lz)] = —M,(L)/b

Closed-form solution

cc T @), =[C], JE@], o [Pec], (@ecdixs + (x,}, where

- e _ _ T
{61,i}8X1{Gz,i}8x1{1}8><1{G4,i}8x1{Gl.iemiL}8><1
{/“3-i}8x1{emiL}8X1{M5'i}8x1 8x8

= <_ﬁp|_Wp|_§p|_$p|_ﬁp|_wp|_§p|_$p)1x

(Peclixs = [ {Qchixs

8

Boundary conditions

U0)=w(©0)=6(0)=¢0)=0, UWL) =W(IL)=06(L)=¢()=0

Closed-form solution

{ch(x)}4xl [_]4x8 [E(x)]8x8[¢Cp]8x8 (Qcp>1><8 + {X }4x1 ’ where

CpP
T
[lf’cp]T [{Gll 8><1{G2’ 8X1{1}8X1{G4L]8X1{n1 L]le{#3l}8><1
8x8 {n3vl}8x1{’u5"']8><1 8x8
and(acphxs = <_ﬁp|_wp|_§p|_ap PXT(L) _WP| _MI:(L) |_6">1X3

The exact solutions presented in Table (1) for different boundary
conditions, including clamped-free, simply-supported, clamped-
clamped, and clamped-pinned beams, provide comprehensive
analytical expressions for the fully coupled extension-bending-
shear-torsion vibration responses of asymmetric laminated beams.
These solutions account for the effects of transverse shear
deformation, rotary inertia, and material anisotropy, offering a
versatile framework for analyzing dynamic behavior under various
harmonic excitations. By applying these solutions, the dynamic
responses of laminated beams can be accurately evaluated for
different configurations without the need for numerical methods.
This analytical approach is highly efficient and valuable for
engineers dealing with complex beam structures in practical
applications.
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Summary and Conclusion

v" This paper presents exact closed-form solutions for the vibration
analysis of asymmetric laminated Timoshenko beams under
harmonic bending and twisting excitations.

Using Hamilton's principle, four governing coupled differential
equations are derived, incorporating first-order shear
deformation theory, which accounts for transverse shear
deformation, rotary inertia, Poisson's ratio, and material
anisotropy.

The formulated equations describe the coupled extension-
bending-shear-torsion responses and are applicable to beams
with various boundary conditions, including clamped-free,
clamped-clamped, simply-supported, and clamped-pinned
configurations.

The derived closed-form solutions provide a robust analytical
method for studying the fully coupled dynamic responses of
laminated composite beams without requiring numerical
methods such as finite element analysis.

The formulation demonstrates the effects of material anisotropy,
transverse shear deformation, and rotary inertia on beam
dynamics, offering an efficient and accurate analytical tool for
dynamic analysis in engineering applications.

This study lays the groundwork for further exploration of more
complex loading scenarios, non-linear behavior, and other
beam configurations, making the method adaptable to a wide
range of structural analysis problems.
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